118 research outputs found

    High Resolution Molecular Gas Maps of M33

    Get PDF
    New observations of CO (J=1->0) line emission from M33, using the 25 element BEARS focal plane array at the Nobeyama Radio Observatory 45-m telescope, in conjunction with existing maps from the BIMA interferometer and the FCRAO 14-m telescope, give the highest resolution (13'') and most sensitive (RMS ~ 60 mK) maps to date of the distribution of molecular gas in the central 5.5 kpc of the galaxy. A new catalog of giant molecular clouds (GMCs) has a completeness limit of 1.3 X 10^5 M_sun. The fraction of molecular gas found in GMCs is a strong function of radius in the galaxy, declining from 60% in the center to 20% at galactocentric radius R_gal ~ 4 kpc. Beyond that radius, GMCs are nearly absent, although molecular gas exists. Most (90%) of the emission from low mass clouds is found within 100 pc projected separation of a GMC. In an annulus 2.1< R_gal <4.1 kpc, GMC masses follow a power law distribution with index -2.1. Inside that radius, the mass distribution is truncated, and clouds more massive than 8 X 10^5 M_sun are absent. The cloud mass distribution shows no significant difference in the grand design spiral arms versus the interarm region. The CO surface brightness ratio for the arm to interarm regions is 1.5, typical of other flocculent galaxies.Comment: 14 pages, 14 figures, accepted in ApJ. Some tables poorly typeset in emulateapj; see source files for raw dat

    Giant Molecular Clouds in M33 - I. BIMA All Disk Survey

    Full text link
    We present the first interferometric CO(J=1->0) map of the entire H-alpha disk of M33. The 13" diameter synthesized beam corresponds to a linear resolution of 50 pc, sufficient to distinguish individual giant molecular clouds (GMCs). From these data we generated a catalog of 148 GMCs with an expectation that no more than 15 of the sources are spurious. The catalog is complete down to GMC masses of 1.5 X 10^5 M_sun and contains a total mass of 2.3 X 10^7 M_sun. Single dish observations of CO in selected fields imply that our survey detects ~50% of the CO flux, hence that the total molecular mass of M33 is 4.5 X 10^7 M_sun, approximately 2% of the HI mass. The GMCs in our catalog are confined largely to the central region (R < 4 kpc). They show a remarkable spatial and kinematic correlation with overdense HI filaments; the geometry suggests that the formation of GMCs follows that of the filaments. The GMCs exhibit a mass spectrum dN/dM ~ M^(-2.6 +/- 0.3), considerably steeper than that found in the Milky Way and in the LMC. Combined with the total mass, this steep function implies that the GMCs in M33 form with a characteristic mass of 7 X 10^4 M_sun. More than 2/3 of the GMCs have associated HII regions, implying that the GMCs have a short quiescent period. Our results suggest the rapid assembly of molecular clouds from atomic gas, with prompt onset of massive star formation.Comment: 19 pages, Accepted for Publication in the Astrophysical Journal Supplemen

    Bar imprints on the inner gas kinematics of M33

    Full text link
    We present measurements of the stellar and gaseous velocities in the central 5' of the Local Group spiral M33. The data were obtained with the ARC 3.5m telescope. Blue and red spectra with resolutions from 2 to 4\AA covering the principal gaseous emission and stellar absorption lines were obtained along the major and minor axes and six other position angles. The observed radial velocities of the ionized gas along the photometric major axis of M33 remain flat at ~22 km s^{-1} all the way into the center, while the stellar velocities show a gradual rise from zero to 22 km s^{-1} over that same region. The central star cluster is at or very close to the dynamical center, with a velocity that is in accordance with M33's systemic velocity to within our uncertainties. Velocities on the minor axis are non-zero out to about 1' from the center in both the stars and gas. Together with the major axis velocities, they point at significant deviations from circular rotation. The most likely explanation for the bulk of the velocity patterns are streaming motions along a weak inner bar with a PA close to that of the minor axis, as suggested by previously published IR photometric images. The presence of bar imprints in M33 implies that all major Local Group galaxies are barred. The non-circular motions over the inner 200 pc make it difficult to constrain the shape of M33's inner dark matter halo profile. If the non-circular motions we find in this nearby Sc galaxy are present in other more distant late-type galaxies, they might be difficult to recognize.Comment: 20 pages, 12 figures, ApJ in pres

    UV Observations of the Powering Source of the Supergiant Shell in IC2574

    Get PDF
    A multi-band analysis of the region containing the supergiant HI shell in the nearby dwarf irregular galaxy IC2574 presents evidence of a causal relationship between a central star cluster, the surrounding expanding HI shell, and secondary star formation sites on the rim of the HI shell. Comparisons of the far-UV (FUV, 1521 A), optical broad-band, H-alpha, X-ray, and HI morphologies suggest that the region is in an auspicious moment of star formation triggered by the central stellar cluster. The derived properties of the HI shell, the central stellar cluster, and the star forming regions on the rim support this scenario: The kinematic age of the HI shell is <14 Myr and in agreement with the age of the central stellar cluster derived from the FUV observations (sim 11 Myr). An estimate for the mechanical energy input from SN and stellar winds of the central stellar cluster made from FUV photometry and the derived cluster age is 4.1 x 10^52 erg, roughly a few times higher than the kinetic energy of the HI shell. The requisite energy input needed to create the HI shell, derived in the `standard' fashion from the HI observations (using the numerical models of Chevalier), is 2.6 x 10^53 erg which is almost an order of magnitude higher than the estimated energy input as derived from the FUV data. Given the overwhelming observational evidence that the central cluster is responsible for the expanding HI shell, this discrepancy suggests that the required energy input is overestimated using the `standard' method. This may explain why some other searches for remnant stellar clusters in giant HI holes have been unsuccessful so far. Our observations also show that stellar clusters are indeed able to create supergiant HI shells, even at large galactocentric radii, a scenario which has recently been questioned by a number of authors.Comment: AJ, accepted, 16 pages, 6 figure

    ESO Imaging Survey VII. Distant Cluster Candidates over 12 square degrees

    Get PDF
    In this paper the list of candidate clusters identified from the I-band data of the ESO Imaging Survey (EIS) is completed using the images obtained over a total area of about 12 square degrees. Together with the data reported earlier the total I-band coverage of EIS is 17 square degrees, which has yielded a sample of 252 cluster candidates in the redshift range 0.2 \lsim z \lsim 1.3. This is the largest optically-selected sample currently available in the Southern Hemisphere. It is also well distributed in the sky thus providing targets for a variety of VLT programs nearly year round.Comment: 5 pages, 3 figures, submitted to Astronomy & Astrophysic

    Data calibration for the MASCARA and bRing instruments

    Get PDF
    Aims: MASCARA and bRing are photometric surveys designed to detect variability caused by exoplanets in stars with mV<8.4m_V < 8.4. Such variability signals are typically small and require an accurate calibration algorithm, tailored to the survey, in order to be detected. This paper presents the methods developed to calibrate the raw photometry of the MASCARA and bRing stations and characterizes the performance of the methods and instruments. Methods: For the primary calibration a modified version of the coarse decorrelation algorithm is used, which corrects for the extinction due to the earth's atmosphere, the camera transmission, and intrapixel variations. Residual trends are removed from the light curves of individual stars using empirical secondary calibration methods. In order to optimize these methods, as well as characterize the performance of the instruments, transit signals were injected in the data. Results: After optimal calibration an RMS scatter of 10 mmag at mV∌7.5m_V \sim 7.5 is achieved in the light curves. By injecting transit signals with periods between one and five days in the MASCARA data obtained by the La Palma station over the course of one year, we demonstrate that MASCARA La Palma is able to recover 84.0, 60.5 and 20.7% of signals with depths of 2, 1 and 0.5% respectively, with a strong dependency on the observed declination, recovering 65.4% of all transit signals at ÎŽ>0∘\delta > 0^\circ versus 35.8% at ÎŽ<0∘\delta < 0^\circ. Using the full three years of data obtained by MASCARA La Palma to date, similar recovery rates are extended to periods up to ten days. We derive a preliminary occurrence rate for hot Jupiters around A-stars of >0.4%{>} 0.4 \%, knowing that many hot Jupiters are still overlooked. In the era of TESS, MASCARA and bRing will provide an interesting synergy for finding long-period (>13.5{>} 13.5 days) transiting gas-giant planets around the brightest stars.Comment: 18 pages, 17 figures, accepted for publication in A&

    A warped disk model for M33 and the 21-cm line width in spiral galaxies

    Get PDF
    To determine the actual HI distribution and the velocity field in the outermost disk of the spiral galaxy M33, a tilted-ring model is fitted to 21-cm line data taken with the Arecibo Telescope. Since M33 is one of the main calibrators for the extragalactic distance scale derived through the Tully-Fisher relation, the outer disk warping is of interest for a correct determination and deprojection of the galaxy's line width. Even though our best model predicts small effects on the observed line width of M33, we show that similar outer disk warping in galaxies oriented differently along our line of sight could affect the widths considerably. Therefore there may be systematic effects in the determination of the rotation velocities and dynamic masses of spiral galaxies, whose exact value depends also on which method is used for measuring the galaxy's total line width.Comment: 27 pages, ps files only, ApJ in pres
    • 

    corecore